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Introduction

Molecular hydrogen as potential fuel and its 
production by bacteria during mixed-acid 
fermentation
H

2
 has a great potential as an ecologically-clean, renew-

able and capable fuel. It is generating no toxic by-prod-
ucts producing only water. H

2
 has higher (~3-fold) energy 

content (~140 MJ/kg) than hydrocarbon fuels as oil 
(Momirlan & Veziroglu, 2005; Maeda et  al., 2007c). The 
most of H

2
 is now produced from the water by the process 

of steam reforming or as a by-product from petroleum 
refining or chemicals production (Das & Veziroglu, 2001). 
However, H

2
 may be produced from agricultural products 

and organic wastes by bacteria during either fermenta-
tive or photosynthetic processes. But fermentative H

2
 

production is more efficient than photosynthetic one. 
Significant reduction of energy costs is also important 
as these processes do not require heating or extensive 
electricity.

Among H
2
-producing bacteria, Escherichia coli is the 

best-characterized bacterium, having established meta-
bolic pathways and, importantly, there are many strains to 
manipulate genetically (Maeda et al., 2007a,b,c; 2008a,b; 
2011; Sanchez-Torres et al., 2009; Hu & Wood, 2010).

During fermentation, the oxidation of common sugar 
(glucose) proceeds via consequent biochemical pathways 
(Figure 1); at the stage of phosphoenolpyruvate, some 
intermediates may be used for succinic acid formation, 
whereas all other end products are formed from pyruvate 
(Clark, 1989; Bock & Sawers, 2006; Poladyan & Trchounian, 
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2009). The ratio of the forming products is variable, and 
it depends on the concentration of glucose, external pH 
([pH]

out
), oxidation–reduction potential (E

h
) and other fac-

tors (Clark, 1989; Riondet et al., 2000). It should be noted 
that the production of H

2
 reduces organic acid formation 

and represents, therefore, an important factor in regula-
tion of cytoplasmic pH ([pH]

in
) in bacteria too.

Further oxidation of formic acid (HCOOH) to H
2
 and 

carbon dioxide (CO
2
) (Figure 1) is catalyzed by formate 

hydrogen lyase (FHL) pathway consisting of formate 
dehydrogenase H (Fdh-H) and hydrogenase (Hyd) (Peck 
& Gest, 1957). H

2
 production and FHL pathway have 

intrigued microbial biochemists and biotechnologists 
for many decades: the study has led to the discovery of 
multiple and reversible [Ni-Fe] Hyd enzymes in E. coli 
(Bock & Sawers, 2006; Poladyan & Trchounian, 2009), of 
which Hyd-3 is a H

2
-producing one (Sauter et al., 1992). 

This has provided new insights into our understanding of 
the FHL, especially Hyd, formation and activity, its cofac-
tors and other regulatory components.

Besides, formate is a highly reducing (E
h
 for formate:H

2
 

couple is −420 mV) and potentially high energy com-
pound. Moreover, the change of standard free energy in 
this reaction is ~3.5 kJ/mol but in vivo conditions, it has 
the value of ~22 kJ/mol (Andrews et  al., 1997), so FHL 
reaction can be coupled to energy conservation. However, 
energetics of this reaction has not studied well.

Recently, it has been shown that E. coli can also uti-
lize glycerol during anaerobic fermentative conditions 
in the absence of external electron acceptor with pro-
duction of H

2
; the latter is observed at acidic (Dharmadi 

et  al., 2006; Murarka et  al., 2008) and alkaline [pH]
out

 
(Trchounian & Trchounian, 2009; Trchounian et  al., 
2011c). Gonzalez’s group (Murarka et  al., 2008) has 
confirmed that the utilization of glycerol occurred in 
a fermentative manner, even when a low supplement 
(tryptone or mixture of amino acids) medium was used. 
Relevantly, no E. coli cell growth was observed when 
glycerol was omitted, and tryptone was shown not to 
serve as a source of electron acceptors (Murarka et al., 
2008). Glycerol fermentation is the novel intriguing find-
ing which contradicts to an idea about inability of these 
bacteria to grow on glycerol under anaerobic condi-
tions in the absence of fumarate as an electron acceptor 
(Kistler & Lin, 1971; Varga & Weiner, 1995; Booth, 2006). 
Glycerol metabolism represents a relatively simple clus-
ter of biochemical reactions leading to glyceraldehyde-
3-phosphate or to pyruvate, the entry points to the 
lower section of glycolysis (Figure 1). Succinic, acetic 
and formic acids and ethanol are shown to be produced 
under acidic conditions; no lactic acid was detected 
(Murarka et  al., 2008). This is linked to the availability 
of CO

2
, which is produced by the formate oxidation 

through FHL and required for glycerol fermentation to 
proceed; H

2
 has negative impact on glycerol metabolism 

(Dharmadi et  al., 2006; Gonzalez et  al., 2008; Murarka 
et al., 2008). But glycerol metabolism during anaerobic 
fermentative conditions requires further physiological 

and biochemical study. It should be noted that glycerol 
is a cheap, abundant and highly reduced carbon com-
pared to sugars and offers the opportunity to obtain H

2
 

and other reduced products by bacteria.
H

2
 production by E. coli grown at slightly alkaline 

[pH]
out

 has been recently determined during glycerol 
fermentation: a different hydrogenase (Hyd-2 but not 
Hyd-3) is suggested to be mainly involved in such pro-
cess (Trchounian & Trchounian, 2009). But Hyd function 
seems to be similar during glycerol and glucose fermen-
tation at low [pH]

out
 (Trchounian et al., 2011c). However, 

it is necessary to note that mechanisms for H
2
 formation 

during glycerol fermentation are not clear yet.

Hydrogenases and pathways for H2 
production by E. coli during glucose 
fermentation

Multiple and reversible hydrogenases
E. coli possesses four Hyd enzymes, which are catalyzing 
the simple oxidation–reduction reaction of 2H+ + 2e− → 
H

2
; three of these (Hyd-1, Hyd-2 and Hyd-3) are charac-

terized well.

Figure 1.  Mixed-acid fermentation pathways scheme in E. 
coli. Glucose oxidation follows via the Embden-Meyerhoff-
Parnas pathway. Formation of lactic, formic, acetic, succinic 
acids and the other end products as well as further oxidation 
of formate resulting in formation of CO

2
 and H

2
 are shown. On 

the ways from phosphoenolpyruvate to pyruvate or from acetyl 
phosphate to acetate, ATP is synthesized on the level of substrate 
phosphorylation. Substrates involved in ATP formation are shown. 
Glycerol can be entered into the pathways on different steps shown; 
exogenic formate can be also oxidized (broken arrows).
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Hyd-3 consists of several large and small subunits, 
denominated as Hyc, which are involved in intra-mo-
lecular electron transfer between oxidation–reduction 
centers. One of the large subunits is a Ni-containing 
[Fe-S]-protein, HycE, with molecular mass of 65 kDa; 
some of the small subunits contain [4Fe-4S]2+ clusters 
(Bohm et al., 1990; Sauter et al., 1992; Rossmann et al., 
1994). The other Hyd enzyme, Hyd-4 denominated as 
Hyf, was postulated by Andrews’s group (Andrews et al., 
1997). It is possible that Hyd-4 is also a Ni-containing 
protein that includes [Fe-S] clusters. Some Hyd-4 sub-
units are homologous to Hyd-3 subunits; they have not 
been isolated and studied yet. Interestingly, amino acid 
sequences of some small subunits of Hyd-3 and Hyd-4 
are homologous to components of the electron transport 
chains (ETC) of bacteria, mitochondria, and plastids 
(e.g. NADH-ubiquinone-oxidoreductase, complex I)  
(Bohm et al., 1990; Andrews et al., 1997). Thus, Hyd-3 
and Hyd-4 both are [Ni-Fe]-containing enzymes form-
ing one group of Hyd enzymes; this group includes Hyd 
from archaea (Kunkel et al., 1998) and many other bac-
teria (Vignais & Colbeau, 2004; Forzi & Sawers, 2007; 
Poladyan & Trchounian, 2009).

Two other Hyd enzymes, Hyd-1 and Hyd-2, oxidize H
2
 

and contribute electrons to the quinone pool (Ballantine 
& Boxer, 1985; 1986; Sawers & Boxer, 1986; Sargent et al., 
1998; Richard et  al., 1999). Hyd-1 is a Ni-containing 
protein, consisted of 3 different subunits (Sawers et  al., 
1986). This enzyme affects H+ translocation across the 
membrane and could be inhibited, for instance, by azide 
(Sawers et al., 1986).

Hyd-1 is encoded by the hya operon; hyaA, hyaB and 
hyaC genes encode large and small subunits (Menon 
et  al., 1991). Four open reading frames hyaD through 
hyaF could encode different polypeptides (Menon et al., 
1990); however, their function is unknown: they proba-
bly have a role in modification of structural subunits and 
activity level of Hyd-1. The expression of hya is induced 
during fermentation under anaerobic conditions in 
acidic medium (King & Przybyla, 1999) and in the pres-
ence of formate but not nitrate (NO

3
−) during growth on 

glucose (Brondsted & Atlung, 1994; Richard et al., 1999). 
However, Hyd-1 is not required for anaerobic growth; 
but this Hyd enzyme is required for the response to 
[pH]

out
 shift from alkaline to acidic conditions (King 

& Przybyla, 1999; Trchounian et  al., 2011b). Since the 
proton-motive force (Δp) is changed upon [pH]

out
 shift 

(Trchounian, 1997), Hyd-1 is suggested to function to 
maintain Δp in an energy-conserving manner.

Hyd-2 contains four different large and small subunits 
(Dubini et al., 2002). The large subunit, HybC, has simi-
larity with a large subunit of Hyd-1 (Ballantine & Boxer, 
1986). It is oxidizing H

2
 to H+ and probably involved in 

their translocation by the other subunit, being an integral 
protein (Laurinavichene & Tsygankov, 2001). HybO small 
subunit with HybC forming the core enzyme is associ-
ated with two other Hyb proteins to complete the Hyd-2 
complex (Dubini et al., 2002).

Hyd-2 is encoded by the hyb operon (Menon et  al., 
1994; Richard et  al., 1999). Its maximal expression is 
attained in alkaline medium (King & Przybyla, 1999) 
which is in agreement with the reported pH optimum of 
the purified enzyme (Ballantine & Boxer, 1986). Some hyb 
gene products are suggested to be involved in the matu-
ration of Hyd-2 and Hyd-1 large subunits (Menon et al., 
1994; Blokesch et al., 2001; Hube et al., 2002). Therefore, 
metabolic cross-talk between Hyd-1 and Hyd-2 on the 
level of gene expression and enzyme activity is proposed. 
This cross-talk is also suggested when Hyd-2, but not 
Hyd-1, activity is enhanced upon the loss of Hyd-3 activ-
ity or when Hyd-1, but not Hyd-2, activity is reduced upon 
abolishing Hyd-3 activity (Menon et al., 1994). Moreover, 
Hyd-3 activity is increased when hyb but not hya is deleted 
(Redwood et  al., 2008). Altogether is understood when 
interaction between Hyd enzymes is towards to recycle 
H

2
; however, further detailed study is required.
The Hyd-1 and Hyd-2 activities exhibit a reciprocal 

dependence on the pH of the medium, when cells are 
grown on glucose (Trchounian et  al., 2011b). Indeed, 
Hyd-1 activity has an essential role in H

2
 metabolism at 

low [pH]
out

. The nature of this dependence on Hyd-1 is 
unclear.

Certain evidence has been obtained that these Hyd-1 
and Hyd-2 both operate preferentially under differ-
ent conditions (Laurinavichene et al., 2001). Unlike 
Hyd-1, Hyd-2 content is reduced by formate (Sawers 
et  al., 1985; Ballantine & Boxer, 1986). Hyd-2 is also 
sensitive to oxygen (Laurinavichene & Tsygankov, 2001; 
Lukey et  al., 2010) and much content of this protein is 
observed under anaerobic conditions (Richard et  al., 
1999; Laurinavichene & Tsygankov, 2001). The study 
of oxidation–reduction properties of these Hyd-1 and 
Hyd-2 enzymes under glucose fermentation has revealed 
maximal Hyd-1 activity at oxidizing environment (E

h
 of 

+30 mV to +100 mV) whereas, Hyd-2 maximal activity 
appears in more reducing conditions (E

h
 below −80 mV) 

(Laurinavichene & Tsygankov, 2001; Laurinavichene 
et al., 2001; 2002; Redwood et al., 2008). The latter is con-
firmed by the absence of Hyd-2 activity under aerobic 
conditions (Lukey et al., 2010).

Interestingly, Wood’s group (Maeda et  al., 2007a) 
has recently obtained that Hyd-3 in E. coli might oper-
ate in a reverse direction having significant H

2
 uptake 

activity like Hyd-1 and Hyd-2 during sugar fermenta-
tion. Moreover, in their turns, Hyd-1 and Hyd-2 can also 
function in reversible mode upon glycerol fermentation 
(Trchounian & Trchounian, 2009). Each Hyd enzyme is, 
therefore, likely to function in one direction, depending 
on fermentation substrate and other conditions; this is 
toward to recycle H

2
.

Thus, Hyd-1 has an energy-conserving role, possibly 
acting to scavenge H

2
 at low [pH]

out
 (Sawers & Boxer, 1986; 

King & Przybyla, 1999). But Hyd-2 might reversibly oxi-
dize H

2
 (Lukey et al., 2010), and functioning principally in 

H
2
 oxidation, it has the potential to function as a “valve” 

to release excess reducing equivalents in the form of H
2
.
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Formate hydrogen lyases: expression of genes 
encoding subunits, FHL structure, different forms and 
functioning mechanisms
Genes encoding FHL subunits and their expression; FHL 
enzyme complex organization
The E. coli genome includes different genes organized in 
fdh, hyc, hyf, hya or hyb and other operons, products of 
which are involved in H

2
 metabolism. First of all, the fdh 

genes encode Fdh-H and fdhF encodes the large subunit 
of Fdh-H (Wu & Mandrand-Berthelot, 1987). Protein 
products of fdhD and fdhE are required for catalytic 
activity of Fdh-H; the first is suggested to be a protease 
involved in formation or maturation of large subunit of 
Fdh-H, whereas the second one is essential for mem-
brane binding.

Hyd-3 subunits are encoded by the hyc operon, which 
according to the Bock’s group (Rossmann et  al., 1991; 
1994) consists of 9 genes. The hycA gene is a transcrip-
tional regulator for the whole operon and its protein 
product, HycA, antagonizes expression of other genes, 
particularly fdhF (Sauter et al., 1992). The effect of HycA 
is possibly realized via binding to a formate-sensitive 
protein, FhlA (Maupin & Shanmugam, 1990; Schlensog 
& Bock, 1990; Schlensog et al., 1994). The large subunit 
of Hyd-3 is encoded by the hycE gene (Bohm et al., 1990), 
whereas the hycB, hycF, and hycG genes encode the small 
subunits of Hyd-3 (Sauter et al., 1992). It is possible that 
hycB causes pleiotropic effects. Its protein product, HycB, 
is suggested by Sawers (1994) to be the small subunit of 
Fdh-H. This interesting idea was supported by the results 
that the protein product of this gene is required for the 
activity of Hyd-4 (Bagramyan et al., 2002). Furthermore, 
the other protein product of this operon, HycH, is not a 
constituent part of Hyd-3, but is required for FHL forma-
tion (Sauter et al., 1992). HycI forms a protease required 
for the Hyd-3 large subunit maturation (Rossmann et al., 
1994). Furthermore, the hyc operon expression depends 
on formate and [pH]

out
 (Rossmann et  al., 1991) and, in 

addition, on molybdenum (Mo) (Self et al., 1999); such 
regulation has been studied for the last years as well. 
Moreover, oxygen and NO

3
− suppress the expression of 

both the hycB and fdhF genes (Wu & Mandrand-Berthelot, 
1987; Sauter et al., 1992).

The hyf operon formed by 12 genes is predicted by 
Andrews et al. (1997) to encode Hyd-4. Nine of these genes 
encode subunits that are homologous to seven Hyd-3 
subunits. The hyfG and hyfI genes encode large and small 
subunits, respectively; the hyfR gene encodes a formate-
sensitive regulatory protein, and the terminal gene focB 
encodes formate permease. Protein products of the hyfD, 
hyfE, and hyfF genes probably represent integral mem-
brane proteins that lack analogs in Hyd-3. These three 
proteins are assumed to give H+-translocating activity to 
Hyd-4 (Andrews et al., 1997), however such activity has 
not been shown yet although it is determined with Hyd-3 
(Bagramyan et al., 2002; Hakobyan et al., 2005). It is pos-
sible, that these proteins might underline characteristic 

functions of Hyd-4 if they actually exist; this would be 
important for FHL energetics.

Thus, the hyc and hyf operons both include structural 
genes encoding small and large subunits of Hyd-3 and 
Hyd-4, respectively. There is also a whole set of genes 
encoding regulatory proteins definitely required for FHL 
maturation.

Moreover, different gene products in E. coli are 
required for appropriate gene expression, synthesis and 
maturation of FHL subunits, and formation of FHL com-
plex (Bock et al., 2006; Forzi & Sawers, 2007). They may be 
important for synthesis of ligands, coordination of Fe in 
active site, incorporation of Ni and Mo into correspond-
ing subunits, the proteolytic maturation of large subunits 
and others (Hasona et  al., 1998; Magaon & Bock, 2000; 
Self et al., 2001; Skibinski et al., 2002; Rangarajan et al., 
2008). This is likely to be a remarkable complex pattern 
of most novel pathways. It is not ruled out that they might 
be involved in repression of other genes encoding com-
ponents of ETC under aerobic or anaerobic conditions in 
the presence of oxygen or NO

3
−. In fact, E. coli cells contain 

various systems sensing aerobic, anaerobic or fermenta-
tive conditions such as the Arc or Fnr systems and others 
(Lin & Iuchi, 1991; Unden et al., 2002; Kovacs et al., 2005). 
However, their relationship to FHL remains unclear.

Based on structure of proteins, membrane localization of 
enzyme and expression of genes encoding its subunits, dif-
ferent models of FHL enzyme complex organization in E. coli 
have been proposed (Sauter et al., 1992; Andrews et al., 1997; 
Bagramyan & Trchounian, 2003; Poladyan & Trchounian, 
2009). One model of FHL complex has been proposed by 
Sauter et al. (1992). According to this model, two catalytic 
components, Fdh-H and large subunit of Hyd-3, associated 
with the cytoplasmic side of the membrane, interact with 
other Hyd-3 subunits. The model requires experimental 
validation because of the little information about small sub-
units and precise pathways of reducing equivalents transfer 
within FHL. It is possible that functionally competent FHL 
complex includes other proteins too.

In spite of limited information about Hyd-4 subunits, 
the other model also suggests location of Fdh-H and large 
Hyd-4 subunit in cytoplasmic side, which bind to mem-
brane via other subunits of Hyd-4 (Andrews et al., 1997). 
Moreover, the hycB gene product has been shown to be 
required for the activity of Hyd-4 at neutral and slightly 
alkaline pH upon glucose fermentation (Bagramyan et al., 
2002) and would be, therefore, considered as a part of FHL 
functional complex. This could explain why E. coli mutants 
lacking Hyd-1, Hyd-2 and Hyd-3 do not produce H

2
 (Sauter 

et al., 1992; Self et al., 2004; Hakobyan et al., 2005).
Both these models are still rather speculative because 

of limited experimental data but they stimulate further 
study.

FHL enzyme complex structure, different forms and 
functioning mechanisms
In E. coli, FHL is a complex that consists of two enzymes, 
Fdh-H and Hyd; the latter is in two forms, Hyd-3 and 
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Hyd-4. FHL containing Hyd-3 is considered as FHL-1 
whereas, the enzyme containing Hyd-4 is considered 
as FHL-2 (Andrews et al., 1997; Bagramyan et al., 2002; 
Mnatsakanyan et al., 2004). This is likely during glucose 
fermentation or upon external formate added, but it 
might be different under other conditions.

Fdh-H is established to be a Se-cysteine (Stadtman  
et al., 1991) and Mo-containing protein located at the 
cytoplasmic side of the membrane. It may have several 
subunits denominated as Fdh; the large subunit, FdhF, 
has a molecular mass of ~80 kDa (Pecher et  al., 1985; 
Gladyshev et  al., 1996) and exhibits catalytic properties 
(Cox et  al., 1981). FdhF contains one [4Fe-4S]2+ clus-
ter (Axley et  al., 1990; Axley & Grahame, 1991), which 
involves NAD+ in the oxidation of formic acid to H

2
 and 

CO
2
. The protein has been already crystallized (Gladyshev 

et al., 1996; Boyington et al., 1997), the crystal structure is 
reinterpreted (Raaijmakers & Romao, 2006): Se-cysteine-
140, a ligand of Mo in the original work (Boyington et al., 
1997), and essential for catalysis, is no longer bound to 
the metal after reduction of the enzyme with formate.

Fdh-H is stable; pH optimum for Fdh-H activity is 
8.0 (Gladyshev et al., 1996). Decrease in pH from 7.5 to 
6.0 has been shown to be accompanied by the reduc-
tion of Fdh-H activity on 60%, which is also decreased 
in the presence of NO

3
− or azide (Axley et al., 1990; Axley 

& Grahame, 1991). However, such dependence on pH 
could not be determined when Fdh-H operates in FHL 
(Bagramyan et al., 2002; Trchounian et al., 2011c).

There is a little information about active centers, 
dynamics and mechanisms of electron transfer in 
Fdh-H, Hyd-3 and Hyd-4, but principles revealed with 
different bacteria (Vignais & Colbeau, 2004; Poladyan & 
Trchounian, 2009) may be employed to image function-
ing mechanisms in E. coli (Figure 2). So, Ni-Fe active 
site in Hyd-3, for example, may be bridging to [4Fe-4S] 
clusters; cysteine residues are probably responsible for 
such bridges. The [4Fe-4S]4+ clusters are able to transfer 
electrons to Ni2+ or Fe2+; [4Fe-4S]2+ state could be pos-
sible. These electrons interacting with H+ can form bonds 
between Ni and Fe through H, and this may allow further 
transformation of 2H+ → H

2
 (Figure 2). Interestingly, 

the interaction of electrons with active center could be 
considered as an autocatalytic step in the reaction cycle 
and, moreover, two possible autocatalytic schemes as 
prion- and product-activation type are suggested ( Osz & 
Bagynka, 2005).

Since Hyd-3 and Hyd-4 are encoded by distinguished 
operons and characterized by different subunit compo-
sition and organization in the membrane, it is reason-
able to assume that different FHL forms are functionally 
active under different conditions and therefore they play 
distinct roles in bacteria.

Factors determining functional activity of multiple 
membrane systems in bacteria include [pH]

out
, E

h
, the 

concentration of substrates and/or products of fermenta-
tion, the presence of some exogenous electron acceptors 
and the ratios of end products (Trchounian, 1997; 2004; 
Poladyan & Trchounian, 2009). These conditions prob-
ably determine FHL different forms (Bagramyan et  al., 
2002; 2003; Mnatsakanyan et al., 2002b; 2004).

Actually, our study with E. coli grown during glucose 
fermentation at neutral and slightly alkaline [pH]

out
 has 

shown that H
2
 production is not observed in fdhF and 

hyf mutants (Bagramyan et  al., 2002). Interestingly, H
2
 

production is detected in various hyc mutants lacking 
large and small subunits of Hyd-3, but it is not formed in 
the hycB mutant (Bagramyan et al., 2002). These results 
suggest that the production of H

2
 by E. coli at neutral and 

slightly alkaline medium involves FHL-2. The physiolog-
ical role of FHL-2 is uncertain, but it may be required for 
generation of CO

2
 for use in the formation of oxaloac-

etate from phopshoenolpyruvate during fermentation 
(Figure 1).

Formate concentration may also act as a regula-
tory factor (Rossmann et al., 1991; Mnatsakanyan et al., 
2002b; 2004; Bagramyan et  al., 2003); various forms of 
FHL are active at formate micromolar and relatively high 
millimolar (≥30 mM) concentrations. Moreover, succi-
nate (Figure 1) may also regulate FHL activity; addition 
of succinate together with glucose causes 2-fold increase 
in H

2
 production (Nandi et al., 2001).

Formic acid as a substrate for formation of H
2
; 

generation and transportation of formate by  
FocA protein
Formic acid is derived primarily from pyruvate in a reac-
tion (Figure 1) catalyzed by pyruvate formate lyase (PFL) 
(Sawers, 2005). The latter in E. coli is activated only under 
microaerobic or anaerobic conditions (Alexeeva et  al., 
2000).

If formate is left to accumulate in the cytoplasm, 
this would result of acidification in a cell and uncouple 
Δp. Controling formate metabolism therefore is crucial 
checkpoint where the potentially deleterious effects of 
formate excess must be balanced against the loss of an 
important source of reducing power and optimization 
of energy generation (Leonhartsberger et  al., 2002). 
Analysis of formate levels in the fermenting E. coli cul-
ture reveals that formate is initially exported out of the 
cells to prevent acidification of the cytoplasm and accu-
mulates to levels as high as 10 mM. Once [pH]

out
 drops 

below 6.8, formate is rapidly and completely imported 
back into the cells where it is metabolized to produce H

2
 

by FHL.

Figure 2.  Electrons and H+ transfers in [Ni-Fe]-containing active 
site of Hyd-3 or other proteins to form H

2
 (Poladyan & Trchounian, 

2009).
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So far, one protein, FocA (formate channel) has been 
identified in E. coli to have a role in formate transport 
across the membrane (Rossmann et al., 1991; Suppmann 
& Sawers, 1994). This protein is encoded by the focA gene, 
which is regulated with the pfl gene in a way that both 
gene products are present in the cell at the same time 
(Sawers, 2005). FocA represents a new class of organic 
acid transport protein. Although nothing is known about 
energetics of formate transport, it is clear that during 
fermentation, the cells are energy limited but, anyway, a 
symport of formate with H+ is a distinct possibility.

Hydrogenases and H2 production by E. coli 
during glycerol fermentation

E. coli is suggested to process different Hyd enzymes 
having H

2
 production activity during fermentation con-

ditions with glycerol as with glucose (Figure 1). Two 
novel principal findings have been already reported for 
glycerol fermentation: (1) H

2
 production is pH depen-

dent (Murarka et al., 2008; Trchounian et al., 2011c), it is 
significant at different pH with the highest rate at [pH]

out
 

5.5 (Trchounian et al., 2011c). (2) At neutral and slightly 
alkaline [pH]

out
, Hyd-2 mostly and Hyd-1 partially are 

involved in H
2
 production, no relation with FHL activity 

is observed (Trchounian & Trchounian, 2009). Whereas 
at acidic [pH]

out
, FHL complex consisting of rather Hyd-3 

than Hyd-4 is required for H
2
 production (Gonzalez et al., 

2008; Trchounian et al., 2011c). This has been confirmed 
recently by results obtained from Hyd enzyme activity 
studies. For instance, in cells grown in the presence of 
glycerol at [pH]

out
 7.5, the specific Hyd enzyme activity 

measured after growth of a hyaB hybC double mutant 
was approximately 5% of the activity observed in the wild 
type strain (Trchounian et  al., 2011b). Deletion of the 
hybC gene encoding the large subunit of Hyd-2 (Menon 
et al., 1994) resulted in an 80% decrease in enzyme activ-
ity, while in a single hyaB mutant the Hyd specific activity 
decreased by 50% (Trchounian et al., 2011b). Hyd-1 and 
Hyd-2 are, therefore, shown to be the main contributors 
to total Hyd enzyme activity. All these are in favor with 
Hyd-2 induction to a higher level upon growth in the 
presence of glycerol during anaerobic respiration shown 
many years ago (Sawers et  al., 1985). Importantly, the 
finding of Hyd-2 functioning in H

2
-producing mode at 

neutral and slightly alkaline [pH]
out

 contradicts to an idea 
that Hyd-2 is irreversible enzyme equipped with only H

2
 

uptake activity (Maeda et al., 2007a). This contradiction 
might be due to highly reduced state of glycerol, which 
provided twice the reducing equivalents produced dur-
ing glucose fermentation (Dharmadi et  al., 2006) and 
probably changed redox regulation of enzymes.

However, there remains a considerable amount that 
we do not understand concerning the physiological 
benefit of the reversibility of Hyd enzymes and H

2
 recy-

cling as well. Possibly, the reversible activity of differ-
ent Hyd enzymes is likely of importance in maintaining 
E. coli survival in the intestinal tract and it has a role in 

establishment of the pathogenic state, as has been dem-
onstrated for other bacteria (Maier, 2005).

Moreover, at acidic [pH]
out

, FhlA and Hyd-4 both affect 
H

2
 production and the requirement of Hyd-3 and Hyd-4 

is different: Hyd-3 evolves H
2
 although Hyd-4 might 

Figure 3.  Reversibility of Hyd enzymes in E. coli depending on 
fermentation substrate and [pH]

out
. Glucose fermentation at [pH]

out
 

7.5 (A), glycerol fermentation at [pH]
out

 7.5 (B), glucose and glycerol 
fermentation at [pH]

out
 5.5 (C). The direction of enzyme operation 

to produce and/or to oxidize H
2
 is shown (arrows) (Trchounian 

et  al., 2011c). Exogenous formate translocated through FocA or 
FocB increases Hyd-3 activity (A, dotted arrows).
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operate in a reverse mode (Trchounian et  al., 2011c). 
Interestingly, increased H

2
 production at a low [pH]

out
 is 

probable when H
2
 uptake activity is absent, so as Hyd-1 

and Hyd-2 worked in a reversed H
2
-oxidizing mode have 

low activity (Trchounian et  al., 2011c). By these results 
and other data obtained with different mutants during 
glycerol fermentation (compared to glucose), the revers-
ibility with different Hyd-enzymes operation could be 
presented (Figure 3).

The recycling of produced H
2
 is, therefore, required 

for hydrogen metabolism during glycerol fermentation. 
The H

2
 recycling suggested and, in addition, changed H

2
 

production rate by double hyaB hybC mutant (compared 
to the wild type) shown (Trchounian et al., 2011c) are in 
favor with the results obtained by Redwood et al. (2008) 
about compensatory uptake function during H

2
 produc-

tion under different conditions. Moreover, increased H
2
 

production in a double hyaB hybC mutant might be asso-
ciated with the loss of hyb but not hya genes (Redwood 
et al., 2008). This seems to be also likely to the conclusion 
of Murarka et  al. (2008) about recycling of H

2
 evolved 

by the FHL complex during glycerol fermentation and, 
in addition, to the suggestion by Zbell & Maier (2009) 
about a role of different levels of Hyd-1 to recycle all H

2
 

produced in Salmonella enterica under fermentative 
conditions.

However responsibility of different Hyd enzymes for 
H

2
 production and regulation of their activity require 

further comparative study with new mutants deleted for 
large subunits of Hyd-1 and Hyd-2 and for FHL transcrip-
tional activators as well.

Regulation of hydrogenases and formate 
hydrogen lyases activity, its coupling with  
H+ transport and dependence on the  
F0F1-ATPase

Role of formate and pH in induction of the enzymes
Formate has a dual role in E. coli FHL regulation 
as a substrate also determining pH of the medium 
(together with one of the products of FHL reaction). 
Increasing formate concentration derived in fermenta-
tion or presence of exogenous formate induces FHL-1 
(Rossmann et al., 1991; Mnatsakanyan et al., 2002b; 2004)  
(Figure 3A), although acidification of the medium also 
promotes induction of this enzyme (Rossmann et  al., 
1991). Such induction was observed at slightly alka-
line medium too (Mnatsakanyan et  al., 2002b; 2004). It 
should be noted that some relation between concentra-
tion of formate added and change in [pH]

out
 is established 

(Bagramyan et al., 2002; Hakobyan et al., 2005), however 
it seems to be not simple to calculate such change in 
[pH]

out
 because of complex situation.

The mechanism of such induction might be a result 
of increased concentration of fermentation products, 
organic acids, causing a decrease in pH. This also 
may be attributed to formate transport from an exter-
nal medium into the cell via formate permease like 

FocA (Rossmann et  al., 1991). Formate is susceptible 
to activation (Figure 4) by formate-sensitive protein, 
FhlA (Self & Shanmugam, 2000). Formate may bind 
to FhlA, which interacts with FocA (Self et  al., 2001). 
Interestingly, FhlA exhibits ATPase activity that might be 
stimulated by formate (Figure 4); direct binding of for-
mate is probable (Hopper & Bock, 1995; Self et al., 2001; 
Mnatsakanyan et al., 2002b). Then these proteins act as 
a cascade in expression of corresponding genes encod-
ing components of FHL; they belong to formate regulon  
(Figure 4). Furthermore, expression induction of the fdhF 
and hycB genes by formate (Wu & Mandrand-Berthelot, 
1987; Hopper et  al., 1994) involves FhlA (Schlensog 
& Bock, 1990; Rossmann et  al., 1991; Schlensog et  al., 
1994; Hopper et  al., 1996) (Figure 4) and Mo (Rosentel 
et  al., 1995; Self & Shanmugam, 2000; Self et  al., 2001). 
Regulation by FhlA takes place at different [pH]

out
; it has 

been recently shown that H
2
 production by fhlA strain 

as well as double fhlA hycG mutant is lowered at [pH]
out

 
6.5 and less at [pH]

out
 5.5 (Trchounian et  al., 2011c). In 

all cases, the presence of formate inside the cells is ulti-
mately required for expression of corresponding genes 
and synthesis of subunits for FHL-1. Moreover, formate 
can also induce the hyf operon expression by binding 
of HyfR, the homologue of FhlA (Skibinski et al., 2002). 
However, Self et al. (2004) has confirmed that FhlA and 
HyfR are able to activate hyf transcription but they have 
further reported that formate is not needed for expres-
sion of this operon. Thus, a comparatively simple model 
for the control of fdhF, hycB and the other gene expres-
sion by formate (Figure 4) can be proposed. This is based 
on controlled synthesis of the formate anion, multiple 
routes of formate metabolism and pH-dependent control 
of transport processes (Sawers, 2005).

Anyway, although information on regulation of FHL 
components synthesis by formate and pH becomes 
increasingly available, a general mechanism for this 
regulation still has not been proposed. However, recently 
it has been demonstrated that high fdh expression might 

Figure 4.  The gene expression induced by formate and regulated 
by the FhlA protein in E. coli. Positive control in gene expression 
and ATP required for FhlA activity are shown (arrows). FhlA has 
ATPase activity.
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occur even without formate (Takahata et  al., 2008). 
Moreover, Hayes et  al. (2006) have reported that hycB 
expression under aerobic conditions is greater (~6-fold) 
at pH 8.7 than pH 5.0. But these authors do not give any 
explanation to the finding. They seem to indicate that 
hycB has a role in strengthening bacterial adaptation to 
alkaline medium. On the other hand, this may specify 
again an important and unusual role of hycB in FHL-2 
under anaerobic conditions at neutral and high [pH]

out
 

(Bagramyan et al., 2002) and in [pH]
in

 regulation as well.

The F
0
F

1
-ATPase requirement for enzymes functioning 

and H+ transport
The most important aspect in regulation of Hyd 
enzymes, FHL and its energetics is the requirement 
of F

0
F

1
, which is the main mechanism in H+ transport 

generating Δp. H
2
 production by E. coli during glucose 

(Bagramyan & Martirosov, 1989; Bagramyan et  al., 
2002) or glycerol (Trchounian & Trchounian, 2009; 
Trchounian et  al., 2011c) fermentation at neutral and 
slightly alkaline [pH]

out
 has been shown to be sensitive 

to N,N′-dicyclohexylcarbodiimide (DCCD). H
2
 produc-

tion inhibition by DCCD is revealed during glycerol fer-
mentation at low [pH]

out
 too (Trchounian et al., 2011c). 

It should be noted that DCCD is a nonspecific inhibitor 
of F

0
F

1
; it can also inhibit other systems involved in H+ 

translocation. However, a point mutation in the atpB 
gene leading to nonfunctional F

0
F

1
 results in DCCD-

resistant H+ efflux (Martirosov & Trchounian, 1983). 
The latter is shown with E. coli whole cells grown under 
aerobic conditions (Martirosov & Trchounian, 1986) or 
under anaerobic conditions but in the presence of NO

3
− 

(Trchounian et al., 1998). These data point out selective 
inhibition of F

0
F

1
 by DCCD. In addition, H

2
 production 

upon fermentation of glucose is not detected in some 

atp mutants lacking functional F
0
F

1
 whereas, the other 

atp mutants having functional F
0
F

1
 are able to produce 

H
2
, but with different characteristics (Bagramyan et al., 

2002; Mnatsakanyan et al., 2002a). The production of H
2
 

inhibited by DCCD is also found in E. coli protoplasts 
(with increased membrane permeability) in the pres-
ence of ATP and formate (Trchounian et  al., 1997). 
Moreover, in the presence of arsenate and protono-
phores, which are decreasing Δp, H

2
 is not produced 

(Bagramyan & Martirosov, 1989). On the other side, the 
F

0
F

1
-ATPase activity of membrane vesicles is markedly 

increased by formate when bacteria were grown on 
glucose (Bagramyan et  al., 2003). However, that activ-
ity disappears in atp-mutants as well as in hyf but not 
hyc mutants grown in the absence of formate and in 
hyc but not in hyf mutants in the presence of formate 
(Bagramyan et  al., 2003; Mnatsakanyan et  al., 2004). 
Thus, the results obtained and summarized (Table 1) 
indicate the requirement of F

0
F

1
 for H

2
 production by 

FHL and by Hyd-1 and Hyd-2 in E. coli depending on 
fermentation substrate, respectively. This is supported 
by the results of independent studies by Barrett’s group 
(Sasahara et  al., 1997) who has demonstrated that the 
DCCD-inhibited production of H

2
 by S. typhimurium is 

not observed in atp-mutants lacking functional F
0
F

1
.

How can such requirement for F
0
F

1
 be explained? It 

is possible that during fermentation F
0
F

1
 couples ATP 

hydrolysis with H+ translocation through the membrane 
and, therefore, it provides transformation of energy accu-
mulated in ATP into Δp possibly required for FHL and 
Hyd enzymes functioning. Such possibility is quite rea-
sonable due to probability of functionally active enzyme 
complex formation at certain Δp or at H+ transport. But 
the results obtained using atp-mutants (Trchounian 
et  al., 1997; Bagramyan et  al., 2002) and also the other 

Table 1.  The effects of different factors on H
2
 production rate by E. coli during glucose and glycerol fermentation at neutral or slightly 

alkaline [pH]
out

.

Strains Factors, conditions

H
2
 production rate, %

Glucose fermentation* Glycerol fermentation**
Wild type Certain conditions 100 100
Wild type K+ depletion 10 no effect
Wild type Osmotic shock (800 mosM) 18.5 100
Wild type DCCD 7.6 (0.1 mM)*** 81 (0.5 mM)***
Wild type Protonophore 3 ND****
Wild type Reducer 118 150*****
Wild type Formate (30 mM) 105 ND
fdhF mutant Comp. with wild type under certain conditions 34***** 45*****
hycB mutant Comp. with wild type under certain conditions 21.2 ND
hyaB hybC mutant Comp. with wild type under certain conditions 115 12
hyfB-R Comp. with wild type under certain conditions 11.5 ND
fhlA mutant Comp. with wild type under certain conditions 20.4 206
atpB-C mutant Comp. with wild type under certain conditions 11.1 76.5*****
*Data are from Bagramyan et al. (2002); Mnatsakanyan et al. (2004); Trchounian & Trchounian (2009).
**Data are from Trchounian & Trchounian (2009); Trchounian et al. (2011c).
***DCCD concentration used.
****Not determined.
*****Not published yet.
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data (Trchounian, 2004; Kirakosyan et al., 2008) suggest 
direct involvement of F

0
F

1
 by association with FHL-2 to 

form some multi-enzyme supercomplex within the mem-
brane (Figure 5). The requirement of Fdh-H, HycB and 
Hyd-4 proteins for F

0
F

1
 in supercomplex results from 

data that the activities of these proteins were dependent 
on each other; moreover, formate, ATP and reducing 
equivalents (NAD+ + NADH) were required (Trchounian 
et al., 1997; Bagramyan et al., 2002; Mnatsakanyan et al., 
2002a; Bagramyan et  al., 2003; Mnatsakanyan et  al., 
2004). There are no evidences about direct interactions 
between the proteins in supercomplex yet but the results 
above made arguments about structural interactions 
(Martirosov et al., 1988; Trchounian, 1997; 2004) stronger. 
These arguments include the fixed stoichiometry for H+-
K+-fluxes during F

0
F

1
 and TrkA system operation under 

different assays conditions (pH, K+ activity, temperature, 
osmotic stress, etc) (Martirosov & Trchounian, 1983; 
1986; Trchounian et  al., 1998) and K+-dependent F

0
F

1
 

activity (Martirosov et al., 1988; Trchounian et al., 1992) 
altered by defects in TrkA (Trchounian & Vassilian, 1994). 
It is important that this fixed stoichiometry has no other 
physical interpretation. Moreover, in such supercom-
plex, F

0
F

1
 also interacts with TrkA to supply the energy 

for a large K+ uptake. F
0
F

1
 is, therefore, considered as 

part of the sophisticated metabolic network and energy 
conversion during fermentation. It is suggested that in 
this supercomplex, the energy could be transferred from 
F

0
F

1
 to TrkA by reducing equivalents (Trchounian, 2004). 

They can be donated from formate through FdhF and 
via HycB. The subsequent transfer of H+ and electrons 
through F

0
F

1
 to TrkA may lead to energy release, used for 

the work of counter-gradient K+ uptake. 2H can then be 
employed for H

2
 evolution by Hyd-4. This model (Figure 

5) seems to be well-grounded and already employed in 
a different approach (Verma et  al., 2007). Furthermore, 
it is in favor to an idea about interactomes with ATPase 
superassemblies in animals and plants that two or more 
proteins are better (Seelert & Dencher, 2011). However, 
protein–protein supercomplexes organization and its 
interplay with metabolism should be further studied to 
understand molecular functional details.

Besides, in acidic medium when H
2
 is formed due 

to activity of FHL-1, F
0
F

1
 has been shown to be also 

necessary (Bagramyan et  al., 2002; 2003). For this case, 
especially with formate oxidation under anaerobic con-
ditions, the other possibility with F

0
F

1
 operating with-

out multi-enzyme complex to synthesize ATP seems 
to be probable (Figure 6). FHL-1 translocating H+ as 
suggested (Hakobyan et  al., 2005) might generate Δp 
which could drive F

0
F

1
 to provide additional ATP for cell. 

This ATP might be also used by K+ uptake TrkA system 
which is shown to have lower activity in acidic medium 
(Trchounian & Kobayashi, 1999) and to function, there-
fore, in a separate manner without complex with F

0
F

1
. It 

should be noted that changed activity of K+ uptake TrkA 
system at different [pH]

out
 (Trchounian & Kobayashi, 

1999; 2000; Trchounian et  al., 2009) might result from 
its different relationship with FHL and, therefore, from a 
different mode of function. The idea (Figure 6) is likely to 
the proposal for the archaeon Thermococcus onnurineus, 
which generates a Δμ

H
+ driven by formate oxidation via a 

FHL complex (Kim et al., 2010).
The requirement for F

0
F

1
 on the activities for the H

2
-

oxidizing Hyd-1 and Hyd-2 has been recently examined 
with E. coli (Trchounian et al., 2011a). During fermenta-
tive growth on glucose at [pH]

out
 7.5, H

2
-oxidizing Hyd 

activity is lacked in atp mutant whereas, at [pH]
out

 5.5, 
it is only 20% that of the wild type. Using in-gel activity 

Figure 6.  Interaction between F
0
F

1
, FHL-1 and TrkA in E. coli 

during mixed-acid fermentation of sugars upon formate supplied 
at slightly acidic [pH]

out
. FHL-1 can translocate H+ (Hakobyan 

et al., 2005) and F
0
F

1
 operates to synthesize ATP (arrows). TrkA is 

dependent on ATP (dotted arrow). See the text.

Figure 5.  Proposed H
2
-producing protein–protein supercomplex 

in E. coli, formed by association of F
0
F

1
, FHL-2 consisted of Fdh-H, 

HycB and Hyd-4, and TrkA. This mode is suggested for cells during 
mixed-acid fermentation of sugars at neutral and slightly alkaline 
[pH]

out
 (Bagramyan & Trchounian, 2003; Trchounian, 2004). As 

reducing equivalents, electrons and H+ transfers through the 
complex leading to H

2
 formation, H+ and K+ translocation through 

F
0
F

1
 and via TrkA but not ATPase activity are shown (arrows).
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staining, it could be demonstrated that in the mutant, 
both Hyd-1 and Hyd-2 are essentially inactive at these 
pHs (Trchounian et al., 2011a), indicating that the resid-
ual activity at [pH]

out
 5.5 could be due to the H

2
-evolving 

Hyd-3 (Trchounian et  al., 2011c). During fermentative 
growth in the presence of glycerol, H

2
-oxidizing Hyd 

activity in atp mutant is highest at [pH]
out

 7.5 attaining 
a value of ~50% of wild type activity, and Hyd-2 is only 
partially active at this [pH]

out
, while Hyd-1 is inactive 

(Trchounian et  al., 2011a). Essentially no H
2
-oxidizing 

Hyd activity is measured at [pH]
out

 5.5 during growth 
with glycerol. Taken together, these results demonstrate 
for the first time that the activity of the H

2
-oxidizing Hyd 

enzymes depends on an active F
0
F

1
.

Interestingly, the requirement of F
0
F

1
 or Δp generated 

by this ATPase for Hyd activity and H
2
 production by E. 

coli during glycerol fermentation has been followed the 
DCCD-inhibited H+ flux study. At [pH]

out
 7.5, H+ efflux 

has been determined to be stimulated in fhlA and low-
ered in hyaB or hybC mutants and hyaB hybC double 
mutant: DCCD-sensitive H+ efflux is observed (Blbulyan 
et al., 2011). At [pH]

out
 5.5, H+ efflux in wild type is low-

ered compared with that at [pH]
out

 7.5; it is increased in 
fhlA and absent in hyaB hybC mutants. Furthermore, 
ATPase activity of E. coli membrane vesicles is lowered 
in wild type glycerol fermented cells at [pH]

out
 7.5 com-

pared with the glucose fermented cells. The ATPase 
activity is decreased in hyaB and less in hybC, stimulated 
in hyaB hybC and suppressed in fhlA mutants; DCCD 
inhibits ATPase activity. At [pH]

out
 5.5, ATPase activity of 

hyaB, hybC mutants membrane vesicles is with similar 
rates and higher compared with that in wild type; it is 
suppressed in hyaB hybC and fhlA mutants. Therefore, 
as per these results obtained recently (Blbulyan et  al., 
2011), in addition to the requirement of F

0
F

1
 (Trchounian 

et al., 2011a), it could be probable to suggest that Hyd-1 
and Hyd-2 might be involved in H+ transport across the 
membrane.

Regulation of cytoplasmic pH by hydrogenases
Bacteria maintain [pH]

in
 in narrow range and for this they 

employ different mechanisms. Bock & Sawers (2006) 
have proposed that FHL in E. coli is involved into regula-
tion of [pH]

in
. Such hypothesis is based on the following 

observations. First of all, FHL catalyzes decomposition of 
formic acid to H

2
 and CO

2
 (Peck & Guest, 1957) so, the 

enzyme neutralizes acidic products of fermentation. 
This process depends on formate concentration within 
the cell and [pH]

out
 (Rossmann et al., 1991). Then, formic 

acid is a weak acid that may act as an uncoupling factor 
dissipating Δp. Decrease of [pH]

out
 potentiates such effect 

of acids formed during fermentation.
It becomes clear why E. coli possesses two forms 

of FHL (Andrews et  al., 1997; Bagramyan et  al., 2002; 
Mnatsakanyan et  al., 2004) and why decrease of [pH]

out
 

increases expression of genes encoding components of 
FHL-1 (Rossmann et al., 1991). However, even in this case 
FHL is also involved in regulation of [pH]

in
. It could be 

suggested that a decrease of [pH]
out

 also increases expres-
sion of genes encoding subunits of Hyd-4 (Andrews et al., 
1997). Although such expression has not been demon-
strated yet, it is hard to assume that both forms of FHL 
are simultaneously activated in response to [pH]

out
.

It seems unlikely that FHL catalyzing terminal reaction 
of mixed-acid fermentation in E. coil (Figure 1) operates 
independently from other fermentation enzymes. This 
viewpoint can be supported by the following arguments. 
First, FHL functioning requires catalytically competent 
F

0
F

1
, however FHL may interact with the K+ uptake sys-

tem TrkA in E. coli (Trchounian, 1997; 2004). Lack of H
2
 

production during K+ depletion was demonstrated long 
time ago (Bagramyan & Martirosov, 1989), and this phe-
nomenon could be explained in various ways. Mutations 
in TrkA are accompanied by changes in H

2
 production at 

slightly alkaline [pH]
out

 (Trchounian et  al. 1998). Under 
these conditions, TrkA forms H+-K+-exchange pump 
in complex with F

0
F

1
 (Trchounian, 1997; 2004); energy 

transfer from this ATPase to TrkA requires reducing 
equivalents (Trchounian, 1997; 2004; Bagramyan et  al., 
2002; Mnatsakanyan et al., 2002a; Kirakosyan et al., 2008). 
As already mentioned, FdhF may provide these equiva-
lents that are further utilized by Hyd-4 for H

2
 formation 

(Figure 5). Thus, FHL activity and H
2
 production depend 

on K+ concentration and therefore in K+-depleted cells, 
H

2
 production is blocked. Another scenario of fermenta-

tion impairment in response to decreased intracellular K+ 
includes reduction of phosphofructokinase and pyruvate 
kinase activity (Puchkov et al., 1982), and this also blocks 
H

2
 production.
Thus, interaction of FHL with other enzymes involved 

into fermentation may be well explained within the 
concept on multi-enzyme complexes controlling meta-
bolic fluxes (metabolon) in different cells (Lyubarev 
& Kurganov, 1989; Kholodenko et  al., 1992; Seelert & 
Dencher, 2011). However, arrangement of sugar and 
glycerol metabolism pathways, especially terminal fer-
mentation reactions (Figure 1), includes formation of 
functional membrane-bound complexes including FHL 
(Figure 5); this is very important from structural and 
energetic viewpoints for regulation under anaerobic 
conditions.

Concluding remarks: responsible 
hydrogenases and further study to  
enhance H2 production

H
2
 is stated to be produced by E. coli and other bacteria 

during mixed-acid fermentation due to Hyd enzymes 
and FHL. E. coli possesses four Hyd enzymes encoded 
by different operons and two FHL pathways composed 
of different Hyd enzymes. The effects of different muta-
tions in these operons on H

2
 production are important 

being dependent upon environmental conditions. It is 
clear that expression of multiple Hyd enzymes and their 
reversible function depend on fermentation substrate 
and [pH]

out
. These properties of Hyd enzymes appear to 
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play important role in increasing the fitness of bacterium 
in order to survive a variety of growth environments.

Optimal conditions for H
2
 production by bacteria 

are under study now, however it is interesting that pro-
duction could be more if glucose is replaced with the 
other sugars and glycerol in complex medium (Maeda 
et al., 2007c). The other important study would relate to 
interplay between biofilm formation and H

2
 production 

by bacteria (Domka et  al., 2007; Maeda et  al., 2007c). 
Different gene expressions of four hydrogenases in E. coli 
has been found during biofilm formation and that may 
change H

2
 production activity.

It can be concluded that our knowledge on Hyd 
enzymes and FHL functioning in H

2
 production by 

bacteria is not exhaustive although mechanisms of ter-
minal stages of fermentation are rather clear. Further 
study would clarify the factors regulating H

2
 production 

and role of Hyd enzymes and FHL pathways in energy 
transformation in the membrane, regulation of [pH]

in
 

and adaptation of bacteria to different environment, as 
well as FHL complex formation and its binding to other 
transport systems and enzymes, formation of functional 
assemblies and their effectiveness in catalysis of fermen-
tation reactions. Moreover, the requirement of the F

0
F

1
-

ATPase for Hyd enzymes and FHL activity is established, 
but mechanisms of this requirement should be studied.

Besides, recently Wood’ group (Maeda et al., 2007b,c; 
2008a,b; 2011; Sanchez-Torres et al., 2009; Hu & Wood, 
2010) have used E. coli K-12 library containing all non-
lethal deletion mutations to rapidly construct multiple, 
precise deletions in the E. coli genome to re-direct 
the metabolic flux toward H

2
 production (Figure 1). 

Removing H
2
 uptake by inactivating Hyd-1 and Hyd-2 

by deleting hyaB and hybC, respectively, is among sim-
ple approaches for metabolically engineering E. coli to 
enhanced H

2
 production during glucose fermentation 

(Maeda et al., 2008a,b). Manipulating with hyaB, hybC, 
hycA, fdoG and other genes and overexpressing of fhlA 
to re-direct formate metabolism, a single fermenta-
tive E. coli strain has been engineered that produces 
~141-fold more H

2
 from formate and ~3-fold more H

2
 

from glucose than the wild type strain (Maeda et  al., 
2008b). Different E. coli strains were also developed 
to enhance H

2
 production by the other group (Kim 

et al., 2009). Using of recombinant DNA technology in 
strain construction and other new and more effective 
approaches are recently reviewed for potential strate-
gies with whole-cell and cell-free systems compared 
(Maeda et al., 2011).

However, glycerol fermentation might be a useful 
pathway to produce H

2
 by bacteria. In this case, the 

effects of cultivation conditions and [pH]
out

 on fermen-
tation of glycerol and end products by E. coli (Murarka 
et al., 2008), the establishing of Hyd enzymes respon-
sible for H

2
 production ( Trchounian & Trchounian, 

2009; Trchounian et  al., 2011c) may be also usefully 
implicated for enhanced production of fuels and 
reduced chemicals.

All of the above become significant for H
2
 production 

technology from organic wastes: absolutely new strategy 
to regulate Hyd enzymes and FHL activity should be 
developed when mixed carbon (glucose, formate and 
glycerol at least) is present.
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